Respiratory Care-Beyond Oxygen Therapy

KIDS ROCK CONFERENCE-2015 CHERYL BAILEY RRT JANEWAY CHILD HEALTH CENTER

Objectives

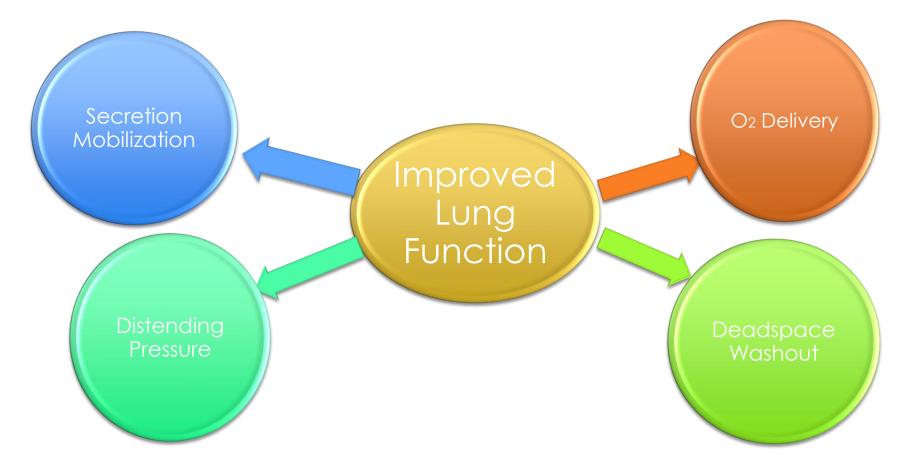
- Define high flow oxygen therapy
- Review the mechanism of action of how high flow therapy works
- Describe options available in the pediatric and neonatal population
- Describe options for noninvasive ventilator support.

Oxygen Therapy Device in ER

- Accuracy of delivered oxygen
- Humidification
- Limited options
- Compliance

High flow options

Nasal Cannula for high flow?


- Typical low flow cannula use is limited to 5-6 L/min
- More often limited to very low flow (<200 ml)

- Delivers high flow to exceed the patient's demand
- Increased patient comfort with optimized humidity
- Improved compliance

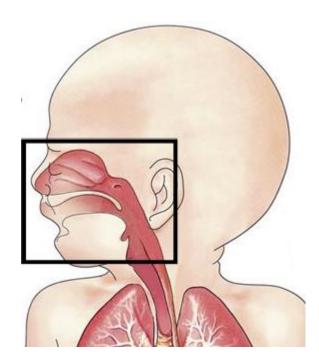
Benefits of High Flow cannula

How does High Flow Nasal Cannula work

- Exceeds inspiratory flow demands
- Decreases nasal resistance
- Warmed, humidified gas improves conductance, compliance and lung elasticity
- Restores mucociliary tree
- Flow can generate pressure for lung recruitment
- Deadspace washout-efficient minute ventilation

Effective Oxygen Delivery

High flow aims to exceed the demands of the patient:


- Minimized room air dilution
- Precisely controlled oxygen delivery
- Humidification

Washout of Anatomical Deadspace

- Continuous washout of anatomical deadspace (upper airway) with delivery of a high flow gas
- Advantage:
 - Reduces rebreathing of expired CO2
 - Provides a reservoir of fresh gas with each breath

Results: More effective gas exchange

Importance of Humidification

" ADEQUATE HUMIDIFICATION IS REQUIRED TO MAINTAIN CILIARY ACTIVITY, PREVENT SQUAMOUS EPITHELIAL CHANGES, PREVENT DEHYDRATION AND THICKENING OF SECRETIONS, MINIMIZE ATELECTASIS AND TRACHEITIS, AND DECREASE HEAT LOSS.",

1. Waugh J et al Respiratory Care 2001

	MEDICAL GASES	TYPICAL ROOM AIR	LUNGS
• TEMPERATURE	15°C	20°C	37°C
• RELATIVE HUMIDITY	2%	50%	100%
ABSOLUTE HUMIDITY	0.3 mg/L	9 mg/L	44 mg/L

Improved secretion quality

- Maintenance of the mucosal function
- Secretions remain mobile for transport out of the airway
- Prevents insensible heat loss
- Prevents changes in nasal airway resistance

Positive Airway Pressure

Variables that affect pressure delivered:

- Flow rate
- Upper airway anatomy
- Size of cannula relative to the nares
- Mouth position (closed or open)

E - B	۰ •	5	F	lov	₩ 1 w 2		nin 			9]	* 1 • • • • • • • • • • • • • • • • • • •	Fic		20 20 20	14 2	1955 Ra	0.5		3 5 3 8 8 7	F		6	in i
Pharyngeal Pressure (cm H,O)		88 88		5 5	21	2 2	19 19	ar A				Ŵ	A.		м		\ *	NA	ſ	1	1		1
	8	-		ġ.	e.	4	÷.	- 5			<u>5</u> .;	ş	.5	22	2		. Q.	South and the state of the stat	v.	:21	21	: 9	2005 (
				5) 5)	200 28.	 	л Д	13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		94 94	N.	æ	3		- 200 - 200	29		20	÷.	3	8	
	12			85. 85				198 198			57	4 6:	č S	27 72	2 2	-13 -50			2	~		22 22	978 1978 - 1

High Flow Nasal Cannula

- Neonatal/Pediatric sizes(Optiflow Junior)
 - ► 4 sizes –colour coded
 - Max flow of 25 L
 - ► Up to 25kg

- Adult (Optiflow)
 - 3 sizes available
 - Max flow 60 L/min
 - Small may fit pediatric patient 4-5 years old

F&P OPTIFLOW JUNIOR										
OPTIFLOW JUNIOR NASAL CANNULA	ITEM CODE	APPROX WEIGHT (KG) 2 4 6 8 10 12 14 16 18 20 22	SPARE WIGGLEPADS							
e Premature Size	OPT312	Max. flow 8 L/min	OPT010							
😽 Neonatal Size	OPT314	Max. flow 8 L/min								
Stant Size	OPT316	Max. flow 20 L/min	OPT012							
Pediatric Size	OPT318	Max. flow 25 L/min								

Getting Started

- Determined by patient size and minute ventilation
- Maximum flow is determined by cannula size (1/2 diameter of nares)
- Initiation (patient specific)
 - 1. Start flow low, with same FiO2 as patient is currently receiving
 - 2. Keep in mind patient's minute ventilation

▶ If oxygenation is primary issue – patient will require higher flow rates to meet/exceed their minute ventilation demands to deliver consistent FiO2 AND

► Higher flow rates will deliver moderate amounts of pressure to help with lung recruitment (smaller patients)

- 3. Adjust flow upwards until WOB is decreased, monitor patient
- 4. Titrate FiO2 as tolerated

Patient selection

- ► High FiO2 requirements
- Moderate respiratory distress
- Patients with increased deadspace ventilation
- Post extubation
- Patients requiring high humidity
- Patients that require a "break" from their CPAP/BiPAP
- Patients with tracheostomies

Who shouldn't use high flow...

- Not a substitute for ventilation (invasive or non-invasive)
- Patients that require the restoration of FRC (requires positive pressure)
- Patients that have decreased LOC or respiratory depression
- Patients who require CPAP for the reduction of afterload

Non-invasive Ventilation-Challenges

- Limited options for pediatrics-most devices designed for >35 kg
 - Lacked sensitivity for patient triggered breaths
 - Uncomfortable for a smaller patient in distress
- Limited interfaces for the 5-20 kg patient
- Compliance
- Early intervention

Where are we now?

Devices now sensitive to weights less than 5-10 kg

- Improved flow sensitivity-better comfort for smaller patients
- Increased pressure capability (up to 30 cmH20)
- Battery for transporting patient without interrupting support
- Download capability

Full/Total face masks

Patient Selection

- Disease pathology
 - Neuromuscular disease
 - Pulmonary edema
- Disease progression
 - Earlier intervention more successful
- Compliance
- Failure of other options (like high flow therapy)
- Must have intact respiratory drive
- Caution with reflux/impaired airway protection

CPAP vs BiPAP

CPAP

- Used for obstructive sleep apnea
- Overcomes resistance caused by a collapsed upper airway

Bipap

- Provides 2 pressure levels
 - IPAP-Inspired pressure
 - ► EPAP-Expired pressure
- Improves minute ventilation by increasing spontaneous Vt
- AVAPS-guaranteed volume(>200ml)

